ChiSA: Static Analysis for
Lightweight Chisel Verification

¥ PASCAL =i

FOPL 202,

))/: J,
)
PIIPAR

39
NANJING UNIVERSITY

AN
00\»1 00"
\& ~ yob

§ chisel DAC'12, 1.5K+ Citations
(Constructing Hardware in a Scala Embedded Language)

* A novel hardware description language (HDL) that enables agile chip

development by leveraging modern PL features for productive design.

—
: HDL :
Write Code Synthesized Manufactured
Hardware Engineers Netlist & Layout
—
o) e [A
Write Code Compiled ® Run
EXE

Software Engineers Executable

¥ chisel DAC'12, 1.5K+ Citations
(Constructing Hardware in a Scala Embedded Language)

* A novel hardware description language (HDL) that enables agile chip

development by leveraging modern PL features for productive design.

“Agile Chip Development: ... Small teams should be able to design chips,
tailored for a specific domain or application. This will require that hardware
design become much more efficient, and more like modern software design.”

— John Hennessy & David Patterson

Lecture for 2017 Turing Award

https://iscaconf.org/isca2018/turing_lecture.html

¥ chisel DAC'12, 1.5K+ Citations
(Constructing Hardware in a Scala Embedded Language)

* A novel hardware description language (HDL) that enables agile chip

development by leveraging modern PL features for productive design.

“Agile Chip Development: ... Small teams should be able to design chips,
tailored for a specific domain or application. This will require that hardware
design become much more efficient, and more like modern software design.”

— John Hennessy & David Patterson
Lecture for 2017 Turing Award

Industrial o —-
Practice @ SI |:|\/e

. (Commercial)

Academic
Practice
. (Open-Source)

XIANGSHAN cee oee

__

https://iscaconf.org/isca2018/turing_lecture.html

productive design is NOT ENOUGH for agile chip development

productive design is NOT ENOUGH for|agile chip development

—

Chip Development Time / Effort

productive design

\

is NOT ENOUGH for|agile chip development

| —

30% Design

70% Verification

Hardware projects often employ more verification engineers than design

engineers, and even require designers to devote nearly half of their time to

verification tasks.

— according to Siemens EDA’s 2024 Global Industrial Study

https://verificationacademy.com/topics/planning-measurement-and-analysis/2024-siemens-eda-and-wilson-research-group-functional-verification-study/

productive design

\

is NOT ENOUGH ror

agile chip development

p—

ity

30% Design

Hardware projects
often employ more
verification engineers
than design engineers,
and even require
designers to devote
nearly half of their time
to verification tasks.

70% Verification

.__A_____________V__

Too heavyweight to be agile!

e MY __

productive design

\

is NOT ENOUGH ror

agile chip development

p—

ity

30% Design

Hardware projects
often employ more
verification engineers
than design engineers,
and even require
designers to devote
nearly half of their time
to verification tasks.

70% Verification

.__A_____________V__

-

‘g lightweight verification

e MY __

oI RN ChiSA: Static Analysis for Lightweight Chisel Verification

ChiSA:

Static Analysis|for Lightweight Chisel Verification

Why Simulation
? hours of simulation for

seconds of chip behavior Bounded Model Checking

[] well-known
state explosion problem
6 .
Heavyweight —~ Theorem Proving

time

labor-intensive construction

of formal proofs
[]
Secure Type Systems
prohibitive

annotation burden
manual effort ST IS B

10

Simulation
hours of simulation for

seconds of chip behavior BO
[1]

Bounded Model Checking

well-known
state explosion problem
[]

e
=t
—
e
"
e
e
—
e

Theorem Proving

labor-intensive construction
of formal proofs
]

Secure Type Systems
prohibitive

annotation burden
]

ChiSA:|Static Analysis|for Lightweight Chisel Verification

Why Simulation
’ hours of simulation for

“ seconds of chip behavior Bounded Model Checking

static analysis is

more efficient ;j
. / time
=1 gmillion-line
‘ - codebases

Lightweight

] well-known

state explosion problem
[] _

—
=t
e
e
"
e
—
=

_’—
i
e

Heavyweight
labor-intensive construction

static analysis is
more automated

of formal proofs
[]
Secure Type Systems
prohibitive

manual effort annotation burden
[]

15

ChiSA: Static Analysis for Lightweight Chisel Verification

K1 : : : : :
Y Applications Chisel Bug Detection Chisel Security Analysis
(RQ1: ChiSA vs. Bounded Model Checking)| | (RQ2: ChiSA vs. Secure Type Systems)
° ...
ChiSA HVFAs Chisel Analysis Infrastructures Proof of Concept @
chisel static analyzer Framework and Instances (Reusable: front-end, IR, manager, etc.) Implementatlon
0...
Ac HVFA
the essence of Chisel hardware value flow analysis
: | I
Theoretical | | | | |
Foundation circuit circuit circuit Inspired Customized
structure behavior characteristics by Software for Hardware
mathematical roots hardware-specificity
(lattice and fixed-point theory) (synchronous, clock-driven, etc)
Ac Ac Ac Properties

Soundness ||Precision | Efficiency

syntax semantics properties about:

= ChiSA: Static Analysis for Lightweight Chisel Verification

Evaluation
Sunmary g
- A

pplications

Hardware-Specific Proof of Concept

Intuition // Q Implementation

. Brief

{ Overvier g
Theoretical

Foundation 17

Hardware-Specific
Intuition

Theoretical
Foundation

What is special about hardware programs?

synchronous asynchronous .
register
reset reset
R
ﬁ
mux D —{p oD ql—
é ,
/\ yANE I A\
CLK1) Lo
clock & timing synchronization \

CDC

(clock-domain crossing)

memory
waddrE Eraddr
wdata 5 rdata S
wen .
Ik
wclk > <E rc

synchronous-read

waddr 5 ¢ raddr
wdata 5 rdata 5
wen .

wclk 2

asynchronous-read

18

What is special about hardware programs?

/- — RegInit p—
;9 / Reset RegNext
/ reset register ™~
AsyncReset (synchronous / memory SyncReadMem
asynchronous) (synchronous-read / \
o asynchronous-read)
clock & timing Mem
i S Clock CDC
ardware-Specific - . .
e \\ synchronization (clock domain crossing)
1 . withClockAndReset
other Chisel constructs
Theoretical Full of hardware-specific constructs uncommon in software.

Foundation

19

Full of

uncommon in software.

How to characterize dynamic

L—— RegInit p——0—0

Reset

/ reset register

AsyncReset

(synchronous /

hardware-specific constructs {

Clock

AN

asynchronous)

clock & timing

synchronization

\

RegNext I

other Chisel constructs

SyncReadMem
memory
(synchronous-read / \
asynchronous-read)
Mem
CDC
(clock domain crossing) /
withClockAndReset
/

nardware behavior?

Hardware-Specific We introduce A, the first calculus to capture the essence of Chisel, and
Intuition prove meta-theorems about A, that faithfully reflect the physical reality.

How to statically over-approximate hardware behavior?

Theoretical

Based on A, we define and formalize HVFA that takes care of hardware-
specific semantics, and prove analysis-essential properties about it.

Foundation Theoretical Foundation: 14 (paper) + 6 (supplementary) pages of formal discussion.

20

Hardware Value Flow Graph (HVFG)

Nodes
Ports Statements Mocking
data port wire register memory
clock I\/Ilonitors black box
reset inspection || verification |
Hardware-Specific
Intuition
Edges A
SO

Value Flows Control \‘\féo/;\\
) - s,
intra-module flow synchronization

. inter-module flow reset mux-switchin
Theoretical e

Foundation

e.g., HVFG of an AsyncFIFO 21

Theoretical
Foundation

pplications

= ChiSA: Static Analysis for Lightweight Chisel Verification

Evaluation
Summary
) A

Proof of Concept
Implementation

Brief

22

Analysis <<il

Results

Frontend

Chisel Compiler > IR Builder

Build {1 @

Hardware Abstraction| ChAIR

Dispatched
to Analyses G ®

Multiple Analyses Management

Output

New Analysis Dev. & Integration

Analysis Manager

ChiSA: Chisel Static Analyzer

®
&

Executed
on IR

Chisel Verification Tasks

Chisel Bug Detection Chisel Security Analysis

®) ﬁ Support

Hardware Value Flow Analysis (HVFA)
(Constant Propagation Analysis) (Interval Analysis) (Reachability Ana.lysis) @

(Register Reset Analysis) (Memory Flow Analysis) (Cross-Module Flow Analysis)
%nchronized Fixed-Point Solver) (Synchronous Flow Function MW

(Digital Dependency Graph) (Clock Tree) (Hardware Value Flow Graph)(S)

(Temporal Relation Graph) (Module Instantiation Graph) COn—Demand Sliced Circuit)
Common Facilities

Fundamental Analyses

The architecture and end-to-end workflow of ChiSA.

ChiSA
(Chisel Static Analyzer)

~

Proof of Concept
Implementation

23

Frontend

Chisel Compiler IR Builder

Hardware Abstraction
to Analyses G ®

I Multiple Analyses Mar

Chisel Verification Tasks

hisel Bug Detection Chisel Security Analysis
®) ﬁ Support

Hardware Value Flow Analysis (HVFA)
Constant Propagation Analysis) (Interval Analysis) (Reachability Analysis @

Register Reset Analysis Memory Flow Analysis Cross-Module Flow Analysis

Synchronized Fixed-Point Solver Synchronous Flow Function Model

Digital Dependency Graph) (Clock Tree) (Hardware Value Flow Graph
emporal Relation Graph) Module Instantiation Graph) On-Demand Sliced Cirg

Common Facilities

Fundamental Analyses

T

Dispatched
to Analyses

ChAIR

(Chisel Analysis Intermediate Representation)
e Structurally Simple (3AC, SSA, Linear)

* Semantically Expressive (for Chisel)

Reusable Infrastructures

[
Frontend
Chisel
Design Chisel Compiler [—>] IR Builder
Input
Build {1 @
Hardware Abstraction
Dispatched
to Analyses Q ®
® Multiple Analyses Management
Analysis <
Results : :
Output New Analysis Dev. & Integration
Analysis Manager

ChiSA: Chisel Static Analyzer

Chisel Verification Tasks

Chisel Security Analysis

Chisel Bug Detection

Hardware Value Flow Analysis (HVFA)
(Constant Propagation Analysis) (Interval Analysis) (Reachability Ana.lysis) @

(Register Reset Ana.lysis) (Memory Flow Analysis) (Cross-Module Flow Analysis)

(Synchronized Fixed-Point Solver) (Synchronous Flow Function Model)

(Digital Dependency Graph) (Clock Tree) (Hardware Value Flow Graph) (S)

CTemporal Relation Graph) (Module Instantiation Graph) (On—Demand Sliced Circuit)
Common Facilities

Fundamental Analyses

Z

Analysis Manager

(ease development and extension)
* Orchestrate existing analyses

* Integrate new analyses

Fundamental Analyses
* areusable HVFA framework
 some general-purpose instances (e.g. intervals)
* graph representations for Chisel programs

ChiSA
(Chisel Static Analyzer)

_Brief Ov

Proof of Concept
Implementation

= ChiSA: Static Analysis for Lightweight Chisel Verification

K1,
Evaluation q Q
Summary
A

pplications

Proof of Concept
Implementation

Brief

> g

Foundation 2

Theoretical

In One Word

Evaluation

Applications

produce helpful results

an effective ano

ChiSA offers

in terms of time and manual effort

significantly more lightweight approach

RQ1: hardware bug detection (e.g., identify violable assertions)

for representative Chisel verification tasks,

RQ2: hardware security analysis (e.g., detect unintended information flows)

especially on large and complex real-world designs.

ChiSABench: Chisel Static Analysis Benchmark

29

Official
Toolchain

System on Chips Deep Neural Network Accelerator

———

oot ' Chisel3 ' Quasar 1 RiscvMini 1 Gemmini
ST (225K /877) 11 (159K/1) 11 (2K/1) i1 (632K/1)

ChiSABench ' XiangShan ! Rocket :! BOOM i Constellation :

| L (72M/1) 1 (560K /2) 11 (550K /1) |} (5K /1) :

Chisel D N S A D o _ N T |
(Static Analysis) =TT TTTTTT oo e i ettt S it A it |
Benchmark . TrustHub :: ChiselFlow | Sodor :i IceNet '} Hwacha
| _(1AM725) 1y (657/18) 11 (21K/5) i (237K/1) i (553K/1) |

Evaluation AU
Security Benchmarks Network on Chips Vector Co-Processor

ChiSABench

Applications

(LoC = 11.3M / #designs = 935)

out-of-the-box accessibility
(all pre-elaborated into standalone files)

30

ChiSA vs. Bounded Model Checking

Static Assertion Analysis
(Insight: approximate assertion violation
conditions with interval and constant HVFA)

BMC SOTA
ChiselTest-BMC [WOSET’21]

RQ1

ChiSA ChiselTest-BMC
Feature Benchmark LoC #Vi i #Vi i
Hardware Vlol.able e Time Vlol.able FCrashies Time
Bu g Detection (#P-Validated) (s) (#P-Validated) (s)
Chisel3 256
- : 2 :
Small-Scale (877 designs) (on average) 25 (24) 0 3.1 139 (139) 7.2 776.3
Evaluation XiangShan 7,176,167 28 (23) 0 1453 Assumption Errors
Gemmini 632,327 8(7) 0 10.7 Internal Errors
Rocket 560,405 13 (13) 0 9.6 Incomplete Errors & Internal Errors
Hwacha 553,087 7(7) 0 10.8 Internal Errors
Real-World Boom 550,147 7 (3) 0 17.6 Incomplete Errors
IceNet 236,506 0 (0) 0 3.8 Incomplete Errors
Constellation 5,389 6 (3) 0 0.1 Incomplete Errors
Total: 9,714,028 69 (56) 0 197.9 0 (0) 8 —

Applications

31

https://kevinlaeufer.com/pdfs/formal_for_chisel_woset_2021_kevin_laeufer.pdf

==

Static Assertion Analysis
(Insight: approximate assertion violation
conditions with interval and constant HVFA)

ChiSA vs. Bounded Model Checking

BMC SOTA
ChiselTest-BMC [WOSET’21]

RQ1

Hardware
Bug Detection

Evaluation

ChiSA is Effective

Real-World (eight were recognized by developers

and scheduledjor future fixes)

()

Applications

32

https://kevinlaeufer.com/pdfs/formal_for_chisel_woset_2021_kevin_laeufer.pdf

ChiSA vs. Bounded Model Checking

Static Assertion Analysis
(Insight: approximate assertion violation
conditions with interval and constant HVFA)

BMC SOTA
ChiselTest-BMC [WOSET’21]

RQ1

Hardware
Bug Detection

Evaluation

ChiSA is Lightweight

(finishes analysis for 9.7M+ LoC within 200s) |
A A

Real-World

9,714,028 197.9

Applications

https://kevinlaeufer.com/pdfs/formal_for_chisel_woset_2021_kevin_laeufer.pdf

Static Assertion Analysis e
(Insight: approximate assertion violation
conditions with interval and constant HVFA)

ChiSA vs. Bounded Model Checking

RQ1

Hardware
Bug Detection

Evaluation

Real-World

Applications

BMC SOTA

ChiselTest-BMC [WOSET’21]

Assumption Errors
Internal Errors

Incomplete Errors & Internal Errors

ChiselTest-BMC is inapplicable on

Internal Errors
Incomplete Errors
Incomplete Errors
Incomplete Errors

large and complex real-world designs. <

(all crashed with various errors)

8

34

https://kevinlaeufer.com/pdfs/formal_for_chisel_woset_2021_kevin_laeufer.pdf

ChiSA vs. Bounded Model Checking

Static Assertion Analysis e
(Insight: approximate assertion violation
conditions with interval and constant HVFA)

BMC SOTA
ChiselTest-BMC [WOSET’21]

RQ1

Hardware
Bug Detection

Chisel3 256
Small-Scale (877 designs) (on average) (3'1> (2776'3>

v v
ChiSA is significantly more lightweight than BMC.

(in terms of time: 3.1s vs 2776.3s)

Evaluation

Applications

35

https://kevinlaeufer.com/pdfs/formal_for_chisel_woset_2021_kevin_laeufer.pdf

RQ2

Hardware
Security Analysis

Evaluation

Applications

ChiSA vs. Secure Type Systems

Taint Analysis
(directly use the taint HVFA)

STS SOTA

ChiselFlow [CCS’18]

#Designs ChiSA ChiselFlow
Benchmark X ' LoC #Vulnerabilities #Annotations Time #Annotations Time
Function (#FP / #FN) (#Sources / #Sinks) (s) (Type Labels) (s)
ChiselFlow 18 x * 655 19 (1/0) 44 (25 / 19) 0.006 228 14.475
19 x AES [85] 1,004,180 54 (0 / 0) 73 (19 / 54) 0.175
3 x ISCAS89 [21] 143,440 3(0/0) 6(3/3) 0.435
Trustub 1 X PIC16F84 [65] 5,932 1(0/0) 2(1/1) 0.017 _
2 X RSA [83] 2,302 2(0/0) 4(2/2) 0.005
Total: 1,155,854 60 (0 / 0) 85 (25 / 60) 0.632

36

https://doi.org/10.1145/3243734.3243743

RQ2
Hardware
Security Analysis

ChiselFlow
Evaluation

Applications

ChiSA vs. Secure Type Systems

STS SOTA
ChiselFlow [CCS’18]

Taint Analysis
(directly use the taint HVFA)

#Vulnerabilities
(#FP / #FN)

ChiSA is Effective
(identified all vulnerabilities with only 1 false positive)

https://doi.org/10.1145/3243734.3243743

ChiSA vs. Secure Type Systems

STS SOTA
ChiselFlow [CCS’18]

Taint Analysis
(directly use the taint HVFA)

RQ2

Hardware
Security Analysis

ChiSA is Lightweight

(finishes analysis for 1.1M LoC within 85 annotations and 0.632s)
A A A

Evaluation

(1,155,854) < 85} < 0.632 >

Applications

https://doi.org/10.1145/3243734.3243743

RQ2
Hardware
Security Analysis

ChiselFlow
Evaluation

Applications

ChiSA vs. Secure Type Systems

STS SOTA
ChiselFlow [CCS’18]

Taint Analysis
(directly use the taint HVFA)

LoC #Annotations
(Type Labels)
655 228
Inapplicable

It is prohibitive to retrofit a

é
million-line-scale codebase with @

1,155,854 an annotation-intensive STS.

39

https://doi.org/10.1145/3243734.3243743

RQ2
Hardware
Security Analysis

ChiselFlow
Evaluation

Applications

ChiSA vs. Secure Type Systems

STS SOTA
ChiselFlow [CCS’18]

Taint Analysis
(directly use the taint HVFA)

Z 7
ChiSA is significantly more lightweight than STS.
(in terms of manual effort: 44 vs 228 annotations)

40

https://doi.org/10.1145/3243734.3243743

In One Word

Evaluation

Applications

produce helpful results

an effective ano

ChiSA offers

in terms of time and manual effort

significantly more lightweight approach

RQ1: hardware bug detection (e.g., identify violable assertions)

for representative Chisel verification tasks,

RQ2: hardware security analysis (e.g., detect unintended information flows)

especially on large and complex real-world designs.

ChiSABench: Chisel Static Analysis Benchmark

41

= ChiSA: Static Analysis for Lightweight Chisel Verification

K1,
Evaluation q Q
Summary
A

pplications

Proof of Concept
Implementation

Brief

> g

Foundation 42

Theoretical

Research Opportunities)\. X

TODO :)

' > ChiSA: Static Analysis for Lightweight Chisel Verification

43

~ | TypeSystem | > [Modularity |- — PLDI24. PLOI23. PLDI2L |

- [Accelerator |- 00PsLA24, PLDI24, PLDI20x2, PLOIIS

DSL + [Processor i PLDI22

S [Proof i PDI2S]

o[- [vemlos_J-{ oorsiazssa. oorsiszs gy
Semantics — BlueSpec ___ |_°_ LD|20 ________________________

X < [speaaicraus -1 oopsiazs N _a

HDL Static Analysis | > [chisel |} poetzs ¥

nied_J-ITTT o0 a

Specialized -+ | P LD|’21

\-| Ssynthesis |- Hs |- poraaxa

— | Decompilation |- ___ P LD|'23

Research Opportunities)\. X

/@FN\,L g v PL HDL

\(Ou Q O,
Jiacai Cui @ NJU, China 9
o’ . @ TODO :)

¢

' \ > ChiSA: Static Analysis for Lightweight Chisel Verification

